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ABSTRACT

The stability of viscosity-stratified bicomponent flow has been studied

by long wave asymptotics, by short wave asymptotics and numerically. These

studies have shown that interfacial instabilities arise from the viscosity

difference between the two fluids. If the surface tension between the fluids

is non-zero, then Hopf type bifurcations leading to traveling interfacial

waves are expected. In this paper, we provera rigorous theorem establishing

the existence of bifurcating solutions of this nature.
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I.

SIGNIFICANCE AND EXPLANATION

Studies employing both asymptotic and numerical methods have shown that,
in the flow of two fluids with different viscosities, interfacial
instabilities can arise at any Reynolds number. Among the geometries that

*- have been studied are plane Couette and Poiseuille flow, pipe flow and flow S
between rotating cylinders.

The question thus arises what happens in those cases where the interface
is unstable. Which new flow patterns that would be stable can develop? C. S.
Yih has conjectured that there may be traveling interfacial waves. More
recent analysis by Hooper and Boyd has shown that there is a crucial
difference between the cases of zero and non-zero surface tension between the
two fluids. If the surface tension is zero, then waves of arbitrarily short
wave length are unstable. In this case, standard methods of bifurcation
theory are not applicable, and it seems possible that no smooth interface,
steady or unsteady, would be stable. In fact, we believe that this might be a
mechanism for the formation of emulsions.

If, on the other hand, surface tension is non-zero, then bifurcation
theory is applicable and Yih's conjecture could be true if the bifurcation
turns out to be supercritical. In this paper, we study plane Couette flow
with periodic boundary conditions imposed in the streamwise direction. We
consider a "basic" solution with a flat interface parallel to the walls. We
prove the existence of bifurcating periodic solutions (interfacial waves) at a
point where the flat interface becomes unstable.
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HOPF BIFURCATION IN TWO-COMPONENT FLOW

M. Renardy1 and D. D. Joseph
2

1. Introduction

The stability of two-component parallel shear flows has been analyzed by long-wave

asymptotics [51, [161, short-wave asymptotics [6], [131 and numerically [111, (13). These

studies show that, if the fluids have different viscosities, then instabilities can arise

at all Reynolds numbers.

This raises the question of possible alternative flow patterns which might be

stable. Yih [16] has conjectured that wavy interfaces might develop. The analysis of

Hooper and Boyd [61 reveals a crucial difference between the cases of zero and non-zero

surface tension between the fluids. If the surface tension is zero, then sufficiently

short waves are always unstable, i.e., there is an infinite number of unstable modes.

This situation is very much unlike the usual problems of bifurcation theory, and we

believe it is possible that no smooth interface, steady or unsteady, would be stable in

this situation. (In reality, of course, the surface tension is not zero, but there will

be instability for very short waves when the surface tension is small and the Reynolds

number is large. We think that this instability mechanism may be relevant in the

formation of emulsions.)

In the case of non-zero surface tension, however, one can establish a bifurcation

theorem. If the bifurcation turns out supercritical, this provides a basis for Yih's

conjecture. For the sake of simplicity, we confine attention to plane Couette flow, but

it is clear that similar techniques can be applied to more complicated geometries such as

lDepartment of Mathematics and MRC, University of Wisconsin, Madison, WI 53705.
2Department of Aerospace Engineering, University of Minnesota, Minneapolis, MN 55455
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concentric flow in pipes or between rotating cylinders. We consider plane Couette flow of

two fluids with equal density, but different viscosities, and an interface parallel to the

plates. Periodic boundary conditions are imposed in the streamwise direction. Evidently,

this configuration is stable at rest. If there is a flow, however, then instabilities can

develop [61, [16). Since, however, surface tension will damp short waves, there can

always be only a finite number of unstable modes. Generically, as the flow rate is

increased, one specific mode will be first to become unstable. Since the eigenvalues are

complex, one expects a bifurcation of the Hopf type [7), leading to traveling interfacial

waves.

The Hopf bifurcation theorem in infinite dimensions (41, [8-101, (14] relies on

coercive estimates for the linearized equations. For one-component free surface flows

such estimates were derived by Beale 12], (31, and we shall, in Chapter 3, derive

analogous estimates for two-component flow. Our proof differs from Beale's and is

slightly simpler. Using these coercive estimates, we can then establish a bifurcation

theorem in Chapter 4. In Chapters 5-8, we outline an algorithm for the computation of

bifurcating solutions.

2. Formulation of the Problem

We consider two-dimensional flow of two fluids with different viscosities and equal

densities between parallel plates.

V
0 y

a 2  Pol2

r % y - h(x)

1 1

The motion in each fluid is described by the Navier-Stokes equations_

(2.1) P(; + (u • V) U) - nlbu - Vp,

- .u . 0 J 0 < y < h(x),

-2-
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(2.2) 0(v + (v*1)v) = n2 Av - q,

- a h(x) < y <1.

We have no slip conditions at the walls:

(2.3) u 0 at y = 0,

(2.4) v - (Vo, 0) at y = 1.

Across the interface, there must be continuity of velocity and traction. This leads to

the equations

(2.5) u- v at y h(x),
a u au au au

(2.6) nI {(1-h 2 ) (- 
+  y- + 2 ( - _ - ) 

)  A

2 av2  av1  av2 av1
n2 h t C + TY- + 2h Ty- rx- I at y -h(x),

au2 u 2 au 1 2 DuI
(2.7) 2n1 - p - 2h nI( r + y- )+ h (2n x1-1 P )

v2 , 3v2  3v I vI .

2n 2 - q - 2h 2 + I ) + he 2 (2n2 r -

Th
+ 2 1/2 at y - h(x).
(1+h' )1/

Here T is the surface tension parameter. Finally, we have the kinematic boundary

condition

(2.8) + U h u2

We are interested in solutions to (2.1) - (2.8) which have a given period L in the x-

direction and are periodic in t. We denote by nI the set {(xy) 0 < x < L,

0 4 y < h(x)}, by n 2 the set {(xy)I 0 < x < L, h(x) 4 y < 11 and by

the inefc kthe interface {(xy)I 0 4 x C L, y = h(x)}. The spaces Hk (0), Hk(A 2 ), H Cr)

consist of those functions which have k square integrable derivatives and satisfy

periodic boundary conditions in the x-direction.

* ** ;, , W,+' .l ,. . . . . . . .. .. ... "" . .,," ."•



3. The linearized problem

In this chapter, we obtain coercive estimates on the linear problem, which we s!halj

need later. We put Vo - 0 and linearize (2.1) - (2.8) at the rest state u = v = 0,

with a flat interface h h0 . We include inhomogeneous terms in (2.1), (2.2), (2.6) and

(2.7). is replaced by A. This leads to the problem:

(3.1) APu - T11 A u - Vp + fl' "

V.u 0 0 < y < h

(3.2) pv - n2v - q + f2 h

V-v -0 ,0h

(3.3) u = 0 * y - 0,

(3.4) v- 0 , y 1,

(3.5)u -v ,y ho

-: ' au2  au I 3 av
.(3.6) 1

(
1  - 2  + * 

)  
f3, y - h

au a
u2 v2

(3.7) 21n 1 - 2 a 
+ q 

" " f 
y  

h
I ay p 21 3 -4.-T"- 4  0y h

(3.8) kh - u , y - h.

We seek solutions periodic in x with period L, and of course the same periodicity is

assumed for f1 , ,.2' f 3  and f4 * Our goal is the following estimate:

Theorem 3.1 1

Let Y > 0. For Re A ) Y, the following estimate holds for solutions of (3.1) - (3.8).

u)+ 1 v I+ + I 1 2 + JAI I
ff2(fll) -- 2( 2 )  R (fl) HI(i 2)--L1

1

(3.9) + I I V I ,+ I+ Is+2AI rh cC [if I + If I

L2 0 )  H +/2 ) H3 /2 (r) L 2 2

4.I+ IA11/ 41f II
+ if31 1/21I 3 L20r) + 

If4 1 1/2(r )

-4-
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Proof:

We multiply (3.1) by u (the complex conjugate of u), and (3.2) by v, add them and p

integrate over the domain. Integrating by parts, and using the boundary and interface

conditions, we find

2(l2 + 2 +1/2n1 <. u>+/2n 2 < v, v + T h, 2
L L L

(3.10)
*L L

"(f u) +(f ' ) + fu(yh dx + f f u2 (y h )dx
-1- -2 -2 31 o 42o

T - T
Hers < u, u > -j(Vu + (Vu) • (Vu + (V)).

Since u is divergence free, u2 has a trace on the interface whose H -/2 - norm can be

bounded by lu1 2  [151, hence the last term on the right side can be bounded by
L )

If4H1/2(r)l 2 (n 1 The third term is bounded by

4 ifl I~ I i I uYV
if 3 2  2 u 2 1 2 -u 

1/ 2

3 L (r) L (r) L(r) 2L 1)  
H 1(01

We assume that the right side of (3.9) is bounded by a constant of order one, and we wish

to bound the left side. From (3.10), we immediately obtain bounds for
lul I IhI (we have used Korn's inequality here).

N H
In the following, we make repeated use of the following estimates:

(3.11) Ii 2 IVH+ 
1
2  P 1 IqU

H 2 H 2 H I HI

(C(IfI+ IfI I+I I  I+- C(12 -2 2 3 1/2 + ihi 3/2 + ])jnuL2 + 2Jnv ),
L L H H LL

(3.12) hl5/2 h C(IuIH2 + lvi 2 + IpIH + Iq HI + Of41H1/2

(3.13) IhI . 2/3 IM 1/3
3/2 4 1w1 5/2

Hy H H%

-5-
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Eatimate (3. 11) follows from (3.1)-(3.6) and (3.8), which form an elliptic system in the

sense of Agmon, Douglis and Nirenberg [1]. (see the remarks at the end of this chapter).

(3.12) is a trivial consequence of (3.7), and (3.13) follows from the convexity property

of Sobolev norms.

Lemma 3.2.:

For any C > 0, the following quantities can be estimated by the right hand side of
.a

(3.9):

Ih 1 ) . - ,I , l 2  -  ,  , 1 I 
, l 1/ 2-r, v , 1 l1/2- , (lug l2

..I " /  O, ( v , 2 + ,q , I )  Iw -1 / 2 -C .L H

44 Proof of the lemma:

We prove by induction that
( 3.14) n  hl 1 4 ClXl2 n/3 n_,,

(3 .1
5 )n  lul 2' Iv 2 , C I 12n /3 -1 ,

( ; . 3 .1 6 ) n u l L 1 , I V : l L I 4 C I P 1 1 / 2 ( 2  n / 3 - 1 1

R. i A / 2 + 2 n / 3 '

(
3 
.1

7 
)n  lu l 2 + Ip i f, Iv i 2 + Iq l I C 2

H H H H
obviously the lemma follows by letting n 4 We already have (3.14)-(3.16) for

n - 0. By combining (3.11) - (3.13), we obtain.:;;5

lul + I + l 2 + Eql C (if + I -2

(3 . 18 ) H 
2  HI + H lN 1 H- L 2 -L

+ If31 1/2 + IX lul 2 + IAX l -2 + IJl Ih 12/3
H- L -L 

2
H

-+ v ) 1 / 3
(ulH2 + IVHH2 + + +

With S -ulE 2 + Ip l I + Iv # 2 + Iq l 1 we find , using (
3

.1
4 )n  - 3.16) n

0 -' 
-6 -
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.
n /3 n  

2 
n+

1
/3 n + 1 +  

/3.

A 7 n'

"- eq 1

.* Next, we wish to show that 1
3
.
14

)n+1 - 1
3
.
16

1n+1 follow from (3.17)n . Using (3.8), the

trace theorem and the convexity property of Sobolev norms, we find

* . C
(3.20) Ih1 1 l- u 2 V u * I'

H H H

Moreover (3.10) implies

(3.21) Ivl + lu
l  

< C(Iul + lvi + IXI-1/4 lu.1/21.1/2) 1/2%'- 3.21 II - 1 -2 -2 - 2 -
H I H 1L 2 L 2L 2 -H1

and
-44... 12 1

(3.22) lv, 2 + fu, 2 C [l1h, + lXl-1/2 (, 2 + ,vi + lI 1 u1/ *u' 1/2 )1/2 1

- 2 L2  H I L - L2 - L H

With x = lul 1+ lvi 1' y = ul2 + 1vi 2 and using (3.17)n, we find that (3.21),
H L L

(3.22) take the following form

(3.23) x 4 C(y 1/2 + 1-1/8x 1/4 Y 1/4

n- I/3-

(3.24) y C C(, 2 x x 1/2 + ll-1 /2 y 1/2 + I1I" 5/ 8 y 1/4 x 1/4)

1/2 /6 1/3
From (3.23) it follows that x C Cy or x •Clxi y depending on whether the

%I first or second term on the right is bigger. In the first case,

". (3.24) yields

2,h n-
1 / 3 n  

3

(3.25) y 4 C (I X y 1/4 + XI"-1/ 2 
Y 1/2 + I Y3/8

From this (3.
15

)n+1 is immediate. In the second case, we get

n-i n 3 11
( 6l 2 / 3  _ 1/6 13/4-

(3.26) y 4 C(Ix1 4 12 y1/6 + ixi-1/
2 y 1/2 + lI 24y 1/3)

From this, (3.15)n+ 1 is also immediate. From (3.
15

)n+1 and (3.21) follows (3.16)n+1, and

using (3.20) and (
3
.1

7
)n we find (3.14) n+ 1.

-7-

% '

::p

• ..4... :'':.-.,..-, -..-- ,----...--.--.. .,...........,,-

-- :- . .. . t | % ,.j' %, . , ," '" '" ". .1.. .'. '- - .'.." " .-, '"



".' .To proceed further, we take difference quotients in the x -direction. These satisfy the

'p..

'same equations (3.1) - (3.8) with the f's replaced by their difference quotients. From

(3.10), we then see that the H -norms of all x-derivatives of u and v can be estimated by

terms of order 1. The divergence condition now yields

1u212 ' Iv212 C.

-5/4+C
Equation (3.20) now yields th I 1 CjAf_ Iand (3.21), (3.22) now imply

C H
lu -- IVE 2 T-r The rest follows easily. It remains to prove (3.11). For this,

L L
we only need to show that (3.1), (3.2) with boundary conditions (3.3) - (3.6) and (3.8)

from an elliptic system in the sense of Agmon, Douglis and Nirenberg [1]. We can formally

regard (3.1), (3.2) as being posed in the same domain by mapping the strip occupied by

fluid 2 onto the strip occupied by fluid 1. We do this in such a way that the interface

is mapped onto itself and the solid boundaries are mapped onto each other. This yields a

system for the six unknowns (u1 , u2, p, v1 , v2 , q), which are now defined on the same

*.' domain. That the Stokes equations are an elliptic system is well known. The same holds

4. of course for two sets of Stokes equations. It is also well known that Dirichlet boundary

F.' conditions satisfy the complementing condition. Showing the comlementing nature of the

interface condition is a straight forward calculation, which we omit.

Remarks:

We have so far only given estimates for a solution that was assumed to exist and have

the regularity implied by the left hand side of (3.9). Such estimates show that (3.1) -

4. .(3.8) for Re A ) Y > 0 is solvable for a closed set of f's (in the topology indicated by

the right side of (3.9)). Solvability for a dense set of f's can be shown in a straight

forward manner by separation of variables. From this we see that in fact, for any

A with Re A > 0, (3.1) - (3.8) has a unique solution. (3.9) holds uniformly in any

closed subset of any right half-plane, if this subset contains no eigenvalues. Moreover,

'. by compactness, the number of eigenvalues is countable, and there can only be finitely

many in any bounded set. (3.10) implies that all eigenvalues have negative real parts.

... ,...........-:-+....,..
.% %~-8

% % %
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4. Bifurcation to travelling waves

It is convenient to use a domain mapping which takes the domain occupied by each fluid to

a fixed one. The most straight forward way to construct such a mapping is to stretch or

contract vertical lines. We shall in addition transform the velocity fields in such a way

that the divergence condition is preserved and (2.8) reduces the linearized form even in

the nonlinear case. In doing this, we essentially follow Beale [2].

Let y - h0 be the flat interface of the rest state, and let y = h(x,t) be the actual

interface, which we assume periodic in x with period L.

s 2
Let P be any linear extension operator that maps functions h(C) e Hs

, into functions

h(C,n) such that h(C,h ) - h() and h L H +1 2 (there are many ways to construct P).
0

For simplicity, we also assume that P takes h h to h = h . Let then

f 0) be a C7 - function of q such that f - 1 near n = h and fo = 0 near

n - 0 and n 1. Define h(Cn,t) *h(C,,t) f (n) + h (1-f (C))

o o o

We now define
" h( rnrt'

(4.1) O(C,n,t) - (c,n *

h
0

Evidently, 0 maps the strip 0 C n C h to U1 , and the strip h C n C 1 to U2 .0 0 2

The velocities are transformed as follows:

(4.2) uilGlCnt)) uj J,
i

where J is the jacobian of E. Of course, v in Q is transformed in the same way.

Explicitly, (4.2) reads

h h- -

(4.3) u- ( + n - ) (u1 , n h l - + n -n u ).
hh h 1 h h 2 "0 0 0 0 0

Formula (4.2) is set up in such a way that u, v are divergence-free in the x,y-plane, if

u, v are divergence-free in the , n-plane. Moreover, (2.8) now assumes the simple

form

-9-
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(%' 4.4) h(Ct) u u2 ( ,holt).

It is also clear that (2.5) does not change its form, i.e. u v at y h(x) e

becomes u - v at n - h . The boundary conditions at the walls are also preser
0

When these substitutions are inserted into (2.1) - (2.8), we obtain a new set of

equations, which we do not write down explicitly. We shall refer to these new equ

as o (2.8). If we have a flat interface h = h0 , then of course (4.3) reads

u - u, and (2.1)* - (2.8)* have the same form as (2.1) - (2.8).

Plane Couette flow is the following solution of (2.1) - (2.8):

n2 V 0 nIVo + Voh on2-n )
Fh(x)-h, O = +o h o^2 1

o." nl+h (n2 -nl) y, u2  1 + h (n -n 1

V2 f 0, p =0, = 0.

We can linearize at this solution, and obtain a set of linearized equations analo

(3.1) - (3.8). As usual, we call A an eigenvalue, if the homogeneous linearized

N. has nontrivial solutions. The estimates in chapter 3 imply that, for Vo  0(rest

is a countable sequence of eigenvalues, all in a sector of the left half plane bou

away from the imaginary axis. All these eigenvalues have finite multiplicity and

index zero. Estimates like those in Chapter 3 can easily be extended to the lines

at Couette flow with finite VO . If we linearize (2.1) - (2.8) at this flow, ther

are a number of terms perturbing (3.1) - (3.8). All these terms are relatively cc

except the one resulting from ut h in (2.8). This latter term vanishes in a fr

-moving with the fluid on the interface. Standard perturbation theory (12] can no%

to show that estimates like in Chapter 3 hold for A in any closed set that lies

right half plane and contains no eigenvalues. However, there can, and as [61, (le

there will be a finite number of eigenvalues with positive real parts if V is

4 ." 4enough. Generically, there will be a critical value Vo, such that, for V (

eigenvalues have negative real parts, but a pair of simple complex conjugate

eigenvalues crosses the imaginary axis transversally as V0  increases past Voc.

-10-
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.7. R... V

*denote these imaginary eigenvalues by ±iw o .

We introduce the following substitutions in (2.1)* - (2.8)*:

T - Wt, u* U - u(V ), V - v - v(V ), h - (h-h -

- - 0 - -0 W

*.. We use the following notation for function space: H °  denotes the space of functions

defined on - ( C < *, 0 0 n C h , which have period L in C and Hk-regularity.0

Similarly, we define H . Finally P- is the set of k times differentiable periodic

functions depending on alone.

Hk(X) denotes the spaces of all 2w-periodic functions defined on - < T < , taking

values in X, and having k square integrable derivatives.

For the analysis of (2.1)* - (2.8)*, we choose the following space V:

1 2 2 2 1 2 2 2
V - {(u*,v, p, q, h*)I u e H ("j ) nl (I ) v. e H (HB ) r) H21

1 1 2 2

1 1 1 1 1 5,2 2 32
H (%h e H(Hr n (Hr, div u. 0, div v 0,

p6 H + ), q 0, H* -, h0 at n - H, -0atn - -*a

1 2

fi p+ff q-o.u*-O at - Ov-O at n, .u -v* at

3h' Ln h h* L *O

hf, 0 i U- at n - ho , f h*ll)dC 1
0

Functions in this space have sufficient regularity such that all the nonlinearities in

(2.1)* - (2.8)* are defined. The coercive estimates of Chapter 3 and the implicit

function theorem can be used to prove the following result (the details of the proof are

analogous to the standard proof of the Hopf bifurcation theorem and are omitted here).

Theorem 4.1:

Assume that, at Vo . Voc, there is a pair of algebraically simple complex conjugate

eigenvalues ±iwo , w 0 0, and no other eigenvalue is an integral multiple of iw0 "

Moreover, assume that those eigenvalues cross the imaginary axis transversally, i.e. if

A(V ) denotes the branch of eigenvalues for which X(Vo) - iwo , then

-1 1-

%. %
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Re XCV + 0. Then there is an analytic branch of nontrivial time-periodic
dV o V Vo

solutions (u(c), v*(C, p(E), q(C), h'(c)) a Y(E), such that Y(c) e V is a solution

of (2.1)* - (2.8)* for V = V (C) with temporal frequency w - (E). For e = 0, we

have Vo  VOC = a, and Y = 0. This branch of periodic solutions is unique except

for phase shift or changes of parametrization.

If, at Vo = Voc, all eigenvalues other than ±ii have negative real parts and we have

4 d
a Re XCV )I > 0, then the bifurcating periodic solutions are stable ifoo V-

V 0 (C) > VOc  for small C + 0, and unstable if V 0) < (c c

~Remark:-

It is easy to show higher regularity of the bifurcating solutions by choosing function

spaces of higher regularity for the bifurcation analysis.

5. Reduction of the bifurcation problem to local form

In the previous two sections, we have provided the analytical tools and the estimates

needed to establish a bifurcation theorem. In the following, we now describe an algorithm

for calculating approximations to this bifurcating solution.

As before, we study bifurcation from plane Couette flow, and we consider the velocity of

the upper plate as the bifurcation parameter. Plane Couette flow is the following

solution of (2.1) - (2.8):

* nr2 VoY
u~x - h__________.

n I +ho(n 2- )

U 2 =0, p = 0,

q (5.1)

* [fnly + ho(r 2 -n1)] Vo

v I +ho(n 2-n 1)

v2 0, q 0.

-12-
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For the bifurcation problem, it is convenient to introduce new variables representing the

perturbation of this solution. We therefore replace uI and vI by u + u

v" + Vl, where ul, vI are given by the formula (5.1) in the regions

0 4 y < h (x,t) and h(xt) 4 y < 1, respectively. Moreover, we set

(5.2) h(x,t) = h + S(x,t),
0

and S(x,t) has zero mean value as a function of x. With this change of variables,

(2.1) and (2.2) take the form
..

4 3au AU1  2

(5.3) p [ " + u I + -ex U2 Ty- + (u") u] nu -Vp, 0 4 y C h(x,t),

div u - 0,

,4.., (5.4) p ( v + v - + n - . - v - Vq, h(x,t) < y < 1,
I1ix + x v2 ay2

div v = 0

On the walls, we have

u-O at y=,,O

(5.5)

v-O at y- fl

In the normal and shear stress conditions, the terms introduced by ul, vI are such that

they cancel. Moreover, h' - 5', so h can be replaced by S. Across the interface

y - h(x,t), we thus obtain the following conditions resulting from (2.6) and (2.7)

(u2 R u 2 fI  au 2  au u

+ i-) + 2 1  1 y )

(5.6)

av 3v av av2 v2 1v 2v 1v

n2 ax + 2 yax

-13-
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0.0

( n 2 +u1 2 ( u1i211 - - p - 25." +; + +-) + A,' 2n - - p)

2v . 2  av 1  av
(5.7) 7 q- 2 

ry  
+- 1. . 6'q2 ( + ) +6'22n 2  - -

2 1/2+ T 8 / (1+ 1
/

% The condition (2.5) is replaced by

'U .~(fri laVo(5.8) u- V1  , V(h+) - u (h+) 2
1 0 1 n +h o(n 2"n 1

(5.9) u v V
2 2-

e Equation (5.8) shows that, for n1 + n2 and V 4 0, 8(x,t) can be eliminated and

expressed by the jump in the x-component of velocity at y - h + 6(x,t). Finally,

equation (2.8) assumes the form

'np.
• ' ' 15.10) + u1 (ho) + u1 6 l h~2zrl u2

1 o 1 n+hp(n 2121

Our bifurcation problem is now given by (5.1) - (5.10). The null solution corresponds to

plane Couette flow. We consider A in (5.6), (5.7) and (5.10) as having been eliminated

from (5.8), and look for solutions (u, v, p,q) which are periodic in x.

6. The spectral problem and its adjoint

The spectral problem for the stability of the null solution is

au
~0 p(L+u + I, +~' 1 p - 2n~ div D E1=0 0 C y -C h

(6.1) " 0

div u - 0
aav

%(6.2) + 2  q-2ldiv D [ v 0 h 4 y C 1

div v 0

Here D [u] is the symmetric part of 7u. On the wells we have

-14-
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u a 0 at y" 0,
(6.3) 4

v a 0 at y " 1.

Prom (5.8), we have 8 -k(u 1 - v), where k o V 2 1

By inserting this into the remaining interface conditions and linearizing, we find the

following conditions at y - ho:

(6.4) u 2 -v 2 - 0,

(6.5) 2n1 D1 2 [u] - 212 D 1 2 (V] - 0,

(6.61 - p + 2 D + q - 2 0 2 2 [v] - Tk(u*-v) 0,
1 2n

(6.7) 1)+u (h ) -
V  0.

We turn next to the computation of the spectral problem, which is adjoint to (6.1) -

(6.7). We multiply (6.1) by u*, (6.2) by v*, the complex conjugates of the adjoint

velocities, and integrate the resulting expressions over their domain of definition. We

assume periodicity in x with period L, and integrate by parts using periodicity,

*solenoidality and (6.3) to derive

PJ -' u + P u "U -2n, div D -ucli u dxdy
Iax 11

a;*
+ j {p Lv' - - + P v' v

I 
2 - 2n div D v dxdy

1 ix 1 n2

J pdivu-j q divv

(6.8) 
1

L
' " ( +2n 2 D22 ; 2 - + 2 n + D 22 )2
0

+ 2n' D 2] -211 v I  [ 1 - 2 2 v D2[']
21I 12- 2 1 12 2 222

-15-
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+ 2n 1 u I D 1 2[u*] - 2n 1 u* D 12(u1] + 2rl 1 u 2 D2 2 [u]}dx•

By considering special forms of u, v, p, q, we find that in 0 4 y 4 h. we have

* 4..

(6.9) pxu- u + P ! u - 2n, div D (u*] - - p,

div u* -0,

whilat in h C y C 1,
o

(6.10) pxv- - 1 v, x e v v - 2n div D fv-I - - ,

div v - 0

We insert (6.9) and (6.10) back into (6.8), and compute

+ f u . Vp*edjdy + f vVq*e dxdy

n1  "2

.L

S " * u 2 - q* v 2 ) di "
4%'4 a

This term is added to the right hand side of (6.8), leading to

L
(6.11) 0 f {(-q+2n 2 D (v])v + (p-

2
1 D 2u])u*

2 22 - 2 1 22 - 20

+ (q - 2n2 D2 2 [*) V2 + (-p + 2n I D22 [u *)u 2

4

'4 + 21n2 w* D 12(11-v  2 1 u* D121[u)

+ 21 [ (u*] - dx
1 U 1 012 - 12 D12 (v

We use (6.6) to reduce the first line of (6.11), (6.4) for the second line and (6.5) for

the third line. Thus we find

! -16-
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~L

(6.12) 0- ( 2-q 22 2 2 6-
o

*+ u (q* - 2n1 D E[v] P* + 2n1 D
2 2 22 1 22

+ (  -v *) 2n1 E u]

S1 1 112
a ~+ (U 1 . V l 2nl D 2 ( ]

I1 112 12
+ v I(2nI D 12 (u*] 2n 22 D 12[CV-)} dx

* "e next write
4. L L u dx

6 -x aua

and set 5 - k(u - v ) , u2  (+1(h (u-V1 1 0 ax

This leads to

0 - J ((-q+2i D (V])(v-u')

2 22 22)

+(U ( < -ft + ()X-i(h o ) k 2 D (v*]

u 1 '1 ) U 2  +x ) ax ( 2n2 22

-p'+ 2n ID 2Cu') + 211 D1 C'>

+ 22- u 1 1
'; " u') " 211 0 , C -u]

+ 1 2 12- 2 12 aZ~ x.

This yields the follovinq four conditions on y -

(6.13) 2n I D 12C' - 2 D 12[r],

-17-
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(6.14) 1 1

(6.15) US - VS
2 2

(6.16) -Th + (A-;(h k (; - 2 D IV *]
Z L*2h0- o ax ' 2 22v'

- +2n 0 *u5 ) +2' D [u*] = 0.
- p + 2n 1 D22 +- 1 '12 --

Thus the adjoint problem is given by the differential equations (6.9), (6.10), the

Dirichlet conditions u* = 0. v e 
= 0 on the walls and conditions (6.13)-(6.16) on the

interface.

It is easy to establish a necessary and sufficient condition for the solvability of the

inhomogeneous problem corresponding to (6.1)-(6.7). Suppose that the zeros on the right

of the first equation in (6.1) and (6.2) and on the right of (6.4)-(6.7) are replaced by

(6.17) S, (x,y), g2 (x,y), g3 (x), g4 (x), gs(x), g6 (x),

respectively. This inhomogenous problem is solvable if and only if the data (6.17) are

orthogonal to the kernel of the adjoint, that in, when (6.17) is such that

(6.19) " u dxdy +.1 .  dxdy
1 2

L
+ ( 3(3D*- 2 + 4 ; + g 5-2

0

+ g 64 0212 D [22e - + 2n I (D2 1)) dx.

We are interested in the neighborhood of a critical point, where a loss of stability

occurs. There is a critical plate velocity V 0 V such that the real part ofo o

A vanishes, and A - im 0 Ne put

V = V (1R),
0 0

so criticality is when R = 0. We get flopf bifurcation when the loss of stability is

strict

-18-
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Let 3
u in ly <h)

v in Q2 (y >h)

be a right eiqenvector satisfying (6.1)-(6.7) at criticality. Then is the right

eigenvector belong to -iw * and r are the left eigenvectors belonging to

iW and -iu •0 o

7. Domain perturbations and Hopf bifurcation

We have already demonstrated that Couette flow can bifurcate into a time-periodic

solution in which we have travelling interfacial waves. To compute this solution we

would, following Lindstedt, map the solution into a fixed frequency domain

(2w periodic in a)

wdt - dso,

and replace
u av

(7.1) with

in (5.3), (5.4) and (5.10). we then map our problem into a fixed spatial domain, using a

one to one linear mapping, which takes boundary points into boundary points

y-1 h6yC 1,(7.2)i Y " (hlx't)-ho -
o h-I1 ho<y 1,

and

h(x,t)-h O(y<h(x,t),o

(7.2)2 y (1 + 0 (Kyo0'h 0

We then change variables, putting x = xo  and y - y(Xoy 0 . where y is defined by

(7.2) in equations (5.3)-(5.10). The form of the" equations changes under the change of

variables. However, following ideas introduced by Joseph [181, (191 we find many

simplifications. We shall now explain these simplifications.

-19-
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.4' First we introduce an amplitude parameter which is conveniently set as a projection

C- u, z*,

44~ where
def 1 2T

(a,b] f J < a,b > da,

0

and <a, b > are intergrals over both regions of the type displayed in (6.8). We are

working in the frame of I VIII.3 of Iooss-Joseph (17], and

(7.3) z* - e C,

where 1' is the left eigenvector at criticality which was introduced at the end of the

last section.

The bifurcating solution may be computed in a series of powers of c. Thus

2 4 4

(7.4) w(C) = 0 + "2 + (" 4 + "' "

. 4 4
(7.5) V (C) - V (1+ - V - - V + .. )

0 o 2 2 41 4

It follows from the classical theory of Hopf bifurcation that w and Vo  are even

functios of E. we have assumed this in writing (7.4) and (7.5). Moreover,

u (x,y,aC) u (xoys)

v (x,y,s,c) - +y o
(7.6) 0-

p (x,y,s,c) 1-0 p fit] (Xoyos)

q (x,y,s,C) q](x ,y s)•

The functions of x and y are defined in deformed domains with a wavy interface

h(x,s,C) - h° - 6(x,s,e). The functions of xo  and Yo was defined in the reference

domain with a flat interface at yo " h. The perturbation of the interface 6(x,s,c) can

be eliminated from (5.8)1 that is,

8(x,s,e) -k (u -Vl)(x,s,C)

-20-
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1. .. F

S%°',

is an identity for all x,s,c. The square brackets on the left of (7.6) indicate

differentiation following the mapping evaluated at C = 0. For example,

4'(nI n
u ' d u(xys, )- ~- (x°'y°.s) " - I 0

%* (7.7)

an U(x,y(X~ y ssc),sC).

There is a simple differential calculus for domain perturbations. The partial

derivatives, holding x, y fixed, at E - 0 are also important. For these

<n>. u(xy_ s,£)(7.8) u Xyo,,C) I tape-- YO n E-0O

The two types of derivatives are related by the chain rule

2 (I] <1> <1>! u ( ))~U U + y IF

<>2u<0> u<0>
1:( . ) u 2 ] < 2 > 2 < 1 >  3 !1 + ( < 1 > )2 -- < 2 > a

( 7 .9 -- " _ + 2 -y T Y-+ + Y y ' ,

S. u(21 ((,o, ) u(2)

(ni(xoyos) mU<> (x,yos) + lower order terms,

where

<nlXo,.) Yo-1
h -1

0

. n<n. 0 ,-(7.10) y ((XS). -. h
N< 0

On the free surface yo . h 0  of the reference domain, we have

(7.11) yn(xfhos) . 8<(X)@ x.).

The equations governing the coefficients in (7.6) are very complicated because the

differential operators with derivatives with respect to x and y in the field equations

must be reexpressed by derivatives with respect to Xo yo under the change of variables

-21-
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x, y + xo , Yo. Since this mapping is invertible we can continue (7.6) as

u (x,y,s,E) u [ xy 0(X,y,s,e),s)
• , -t+l -0

(7.12) V (x,y,s,() -v (xy(xys,),)

JLo

etc • etc.

Fortunately it is never necessary to solve the complicated equations which govern the

derivatives [] on the right of (7.6). In fact we need only to do much simpler

calculations for the partial derivatives <0. When the partial derivatives <> are

known the total derivatives [t] may be computed by the chain rule (7.9). The point of

simplicity of partial derivatives is that they don't perturb the operators which are

defined on region S1 and below and above the free surface, see [18] and [19]. For

example, <n> <n>
.- ,(x.. yl n  3u =

(7.13) div u<n>(, S) 1 2
(7.13 --v uOXoos -X r- 0

whereas

div u (n (X ,y ,s) + 0

The same type of simplication holds for the perturbation equations which arise from (7.1),

(5.3) and (5.4). For example,

(7.1 4<2> a u<2> 2 2 au <0> (0> <2> <1> <1>

.P(7[14) P [to + u I +e--x u x -2  u + -u
Rx

,'.au u<0>
1 o 1 x 'I -

"-" "" -- > <2>_ 2

The unknowns here are u<2 > p(2 and V2

It is not possible to avoid the total derivatives [i in the equations (5.6)-(5.10)

because these are defined on a manifold, the interface, and not in a region. The

interface conditions are of the form

"-22-
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(7.15) g(x,y = h(x,s,C), a, C) " 0

and the perturbation of y = h with £ cannot be avoided. In fact the interface

conditions are identities on the interface so that tangential derivatives on them vanish

(see (191).

The following is a recipe for perturbations of the domain in bifurcation problems.

First, we introduce the frequency w(c) into (5.3), (5.4) and (5.10) using (7.1). We

then insert the series (7.4), (7.5) and the series

u(x,y,s,C) u<>(Xoyos),

v (x,y,,)- o )

(7.16) p(x,y,sc) 0 0 p P ( yoS),

q(x,y,s,C) q<1> (xoyos),

<0
S(xB,) (XoS)

into div u - div v - 0, (5.3), (5.4) and (5.5) and identify the perturbation equations.

These equations hold in the reference domain. To get the equations which jovern the

interface conditions (5.6)-(5.10) we insert the series (7.6) and identify. Then we

express the derivatives (] with partial derivatives <1>, using the chain rule. The

perturbation equations arising from interface conditions are thus defined on the flat

interface y - ho.

The series on the right of (7.16) may he expressed on the deformed domain by

inverting the mapping, as in (7.12). In fact, the series on the right of (7.16) is equal

to the series on the right of (7.6), though the partial sums of these two series are not

equal (see equations of (18]).

-23-

%S

I

•ffi~affc NZ. . N
A- .



8. Solvability of the perturbation equations

We must solve perturbation problems of the following form

(i) All functions of s are 2W periodic in s

(ii) All functions of x = x0  are L periodic in xO

(iii) In the region 0 4 y. ( ho,

<n> 2 <n>

FT
u1 u2I (.1), r- + - = 0,
0 0

(u <n> au<n> <n> <n>(8.2) p0aio l+u- +eu <n u,] -, <n > + pn
o 38+ x- x +s 2 1"I-

0

(= ( , XV o s).
in n o

%(iv) In the region h 0 y 0 1 we have the same equations with0

<n> <n> <n> <n>
v (xo,Yo,S), V(yo), q and 8 replacing u , u, p and 81.

<n><n
(v) U =0 at yo 0 O, v 0 at yo - 1.

(vi) On the interface y - h° + , we have by (5.8)
Jl f jdel

V ,(8.3) k kfuj. u f U,-v,.

We have eliminated 5 from the interface equations (5.6), (5.7) and (5.10) with

Of course

Sk<n> . [uI<n>Il on y - ho

(vii) The four interface conditions on Yo - ho  are of the form

<n> <n>
u2  - v 2  =6 (V , x, S),

<in> <in>
n ID 12 u I - n 2D 1 V 1= 4(V, nr ao),

i 1D12[U n- 212 n - 84n ,  o  )

- <in> + n D [u<n>] + q<n> < I

.. q - ~n>+ 1 22 -" f2 D2 2 [! n ]

- kT -L q2 <n> . ,n,.o,.,,

-24-
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k(W ~~ u2 (k egn n 6(.n, V x ,10 1 0 x u2 6 n'Xo'S).
o

The inhomogeneous terms 6 are linear in the unknown parameters w and V and are
n n

otherwise known from computations at orders t < n.

These inhomogeneous problems can be solved uniquely in the space orthogonal to the

null space of the adjoint operator introduced at the begining of 16. This null space is

two dimensional and is spanned by

z and z

defined by (7.3) and explained in IVIII. 3 of Iooss & Joseph. There are therefore two

solvability conditions to be used in the determination of the parameters w and V .n n

4.4--
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